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Abstnet-The large deftection behavior of the laminated composite plates beyond the elastic limit are
investigated. A modified version of Hill's theory for anisotropic metals is used in the analysis of a baron
epoxy cross ply symmetric plate under a uniform load and havinl simply supported immovable edJCS. An
alternate set of plastic stress-strain relations is also employed wherein the eifects of hydrostatic pressure
on yieldinl and compressibility in the plastic ranle of composite materials in the initial staae of plastic
deformation are considered. The solutions of both approaches are thus compared.

INTRODUCTION
One commonly used composite structure consists of many layers or laminae bonded one on top
of another to form a high strength laminated composite. Each of the lamina may be considered
as anisotropic, homogenous material.

The incorporation of high strength and high modulus filaments in a low strength and low
modulus matrix material can result in a structural composite material with high strength to
weight ratio. Thus, the potential of two-material composite for use in aircraft, space vehicle,
and propulsion system has stimulated considerable research activities in the theoretical predic
tion of the behavior of anisotropic laminated media.

The classical laminated plate theory based on Kirchhoff assumptions has been well
established[1-3]. Various investigations of the elastic large deflection behavior of orthotropic
plates have been undertaken by different researchers[4-13]. However, most of the currently
used matrix materials in composites have high strain capabilities. In the investigation of the
bending of composite plates undergoing large deformation yielding is apt to occur and its effect
must be accounted for in the analysis.

Various studies on the plastic behavior of anisotropic materials have been undertaken by
different researchers[14-28]. Utilizing a finite element formulation, Lin et aI.[29] suggested an
important difference between the inelastic behavior of composite materials and homogeneous
metals, namely the existence of yielding under hydrostatic pressure. Consequently, the analy
tical formulation of macroscopic yield condition and flow rules will have to account for this
effect. It also follows that during plastic flow of the matrix, composite will exhibit volume
change in plastic flow due to the elastic compressibility of the matrix and fibers. Therefore,
numerous restrictive assumptions made in the development of the plastic behavior of composite
materials do not represent the real material.

In view of the above discussions, it is noted that a realistic macroscopic yield condition and
flow rule to be used in the analysis of composite materials subjected to the biaxial state of
stress, such as plate bending problems, is lacking at this time. However, an approximate theory
may be constructed by utilizing the initial yield surfaces given by Lin et al. [30].

The purpose of this investigation is to study the large deflection behavior of the laminated
composite plates beyond the elastic limit. The incremental plasticity theories employed in the
analysis are:

(1) A modification to Hill's Theory[16J has been made[31, 32J by treating the anisotropic
parameters as variables whose values are dependent on the current level of stresses. Hence, the
restriction on the proportional increase in yield stresses is removed and thus the subsequent
surfaces do not retain the same initial shape.

(2) An appropriate set of plastic constitutive relations for composite materials in the initial
stage of plastic deformation is developed wherein the effects of hydrostatic pressure on yielding
and compressibility in the plastic range are considered.
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The modified Hill's Theory and the alternate approach are used in the analysis of a boron
epoxy symmetric cross ply laminated plate under a uniformly distributed loading. The edges are
assumed to be immovable in the plane of the plate and simply supported. The equivalent load
concept [33] in which the inelastic strain components as well as the nonlinear terms of
displacements are considered as an additional set of lateral loads is utilized in obtaining the
solution to the example problem.

MATHEMATICAL FORMULATION
A multilayer composite consists of a number of unidirectional layers with different fiber

orientations. Consider a plate composed of n laminae as shown in Fig. I. Let x, y and z be a
set of coordinates with x and y axis located in the middle plane of the plate and z-axis pointing
downward. The components of displacement of the middle surface along x, y, and z axis are
denoted by V, V, and ~ respectively. A typical lamina (i) is bounded by planes z = hi at the bottom
and z = hi_I at the top of the lamina. From Kirchhoff's assumption of plates, the well known strain
displacement relations, the constitutive relations for the Kth orthotropic layer in a state of plane
stress, the forces and moments are given as[l]

Ex =Vu +1/2 ~x2- Z~u

Ell = V,y + 1/2 ~/ - Z~yy

2Exy = V,y + V,.. + W,.. W,y - 2ZW,xy

(I)

(2)

(3)

I~l
(4)

Where E~j and Qil denote the components of plastic strain and the reduced stiffness coefficients,
respectively, and

J"'2
(Ni', M~') = QijEj'(I, Z) dz.

-"'2

(5)

(6)

Note that the contracted notation is used in eqn (6). Repeated index implies summation over the
range of that index.

Consider a symmetrical cross ply laminated plate composed of laminae oriented such that
their principal material directions correspond to the coordinate axes. Using the above relations,
with no applied body forces, the equation of equilibrium can be expressed in terms of the
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middle surface displacements as

D II W;.u.u + 2(D12 + Dti.) W;.uyy +~2W,yyyy =q + ii + q"

where

and

X" =-[aa flt/2 QIJEj dZ + aa flt/2 Q~E;" dZ]
X -1t/2 Y -1t/2

x. u

(7a)

(7b)

(7c)

(8)

[
a2 flt/2 2a2

11t/2 a211t/2 ]
q" =- ";':1 Q.JEj'Z dZ + --;-T Q~E;"ZdZ +";':1 Q2JEj'Z dZ

oX -1t/2 riXoy -1t/2 oy -1t/2 •

(9)

INCREMENTAL PLASTIC STRESS-STRAIN RELATIONS
Let ~(i = I, 2, 3) be a set of rectanguIar coordinate system with XIX2 in the plane of the

lamina and XI oriented along the filament direction. A modification of the plasticity theory for
anisotropic metals proposed by HilI[l6] has been made by Hu[31] and Jensen et al.[32]. For a
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detail presentation of the modified HIll's theory (MHT) the reader may consult the above
mentioned references. The stress-plastic strain increment relations for (MHT) are given here,
for convenience, by

(0)

where 0"*, .:1E"*, aij are the effective stress, effective plastic strain increment, and anisotropic
parameters, respectively. The generalization of the uniaxial stress-strain curve in 2-2 direction
leads to

a22 =1.0

E"* =g(O"*).

(1)

The relation for the effective plastic strain increment for the state of plane stress (0"33 =Tn =
T23 = 0) is given as

Equations (0) and (12) are combined to obtain the incremental stress-strain relations.
An alternate set of plastic stress-strain relations (AT) is developed herein where the effects

of hydrostatic pressure on yielding and compressibility in the plastic range of composite
materials are considered. Using the reciprocal theorem for displacements in the inelastic bodies
of both homogeneous and composite materials, Lin has shown that yield surfaces coincide with
plastic potential [34]. The existance of the initial yield surface [30] thus offers a means of
calculating the incremental plastic strain vector for the initial stage of plastic deformation.

An analytical expression for yielding function was obtained by fitting curves to the initial
yield loci. Thus the yielding surface in 0"1 .. 0"22, TI2 space may be represented by

(3)

where 41's are known constants. Since the yielding function has approximately the same
representation in two transverse directions X2 and X3, eqn (13) may be generalized to the case
of a three dimensional body as

(4)

Note that due to this generalization of the yielding function two additional constants 4144 and 4166
are introduced whose values are yet to be determined.
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The procedure used to derive plastic stress-strain relations for composite materials is
similar to that employed for the case of an isotropic medium [35). A loading function of the
form given by relation (14) is assumed for the initial stage of plastic deformation. Since the
yield surface of a composite material is shown to coincide with plastic potential, the plastic
stress-strain increment vector may be taken along the gradient of the yielding function.
Accordingly

njj =.!L_l_
iJO'ijl~1

k, 1= 1,2,3 (15)

(16)

n//s are the direction cosines of a unit normal to the yielding function. The term dSIlI is defined
as

(17)

where no sum on indices k and I is implied in eqn (17). fJkI'S are the constants of proportionality
to be evaluated from uniaxial test data. Since the iDitial stage of plastic deformation is
considered in this investigation, the magnitudes of fJllI are evaluated at the initial yield and are
assumed to remain constant. Using eqn (14), relation(16) may be expressed in terms of O'/j, 4>'s,
and 1~I.When carrying out the partial differentiation in eqn (16), O'ij and O'jI(i~ j) are considered
to be different terms. The resulting relations may now be used together with eqns (IS), (17) and
the uniaxial test data to obtain the constants of proportionality fJ~. Thus,

I
fJl3 = fJ31 = 20;3

I
fJ23 = fJ32 = 2023

(18)

where E"'s and O"'s are the plastic moduli and plastic shear moduli, respectively. Equations
(15HI8) may be combined to obtain the constitutive relations for a plastically deformed
composite material. The relations obtained thus far may be specialized to a plane stress case.
We then have

(9)
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where

and
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[
2 2 2 )2 2 ] 1/2

I~I = (-f.il- U22) + (?:!fp. _UII) + (UII + Un +2~
tP II tP33 tP22 U33 tP33 tP44 tP 33

(20)

(21)

Examination of eqns (19)-(21) reveals the presence of tP44 in these equations. It was
mentioned earlier that due to the generalization of the result of the theoretical initial yield
surface to a three dimensional case two additional constants, namely tP44 and tP66' were
introduced into the expression for yielding function. The generalization of yielding function is
necessary in order to obtain correct plastic constitutive relations. This is evident by the
presence of additit>nal terms in the two dimensional case given by eqns (19)-(21). Utilizing the
data of Ref. [36], the initial yield surface in CT22, CT33, '7'23 space was constructed for the example
problems. The magnitude of tP44 was thus determined.

METHOD OF SOLUTION

It has been shown that the inelastic strains and the nonlinear terms due to lateral deflection
can be considered as a combination of equivalent lateral loads, edge moments, and in-plane
forces[33]. Thus, the solution of an inelastic Von Karman type plate can be reduced to that of
an equivalent elastic plate with small displacements. In this paper the governing equations of
symmetric cross-ply laminated plates given by eqns (7)-(9) will be considered. However, the
method of solution is general and may be used to solve the governing equations in the most
general form.

The incremental constitutive relations, eqns (10) and (12) or (21), are employed in this
analysis. The displacement, stress, and strain fields are obtained by the solution of eqns (7)
together with relations (8) and (9) in their incremental form. An iteration procedure used to
solve these equations is described below:

Consider a plate with arbitrary boundary conditions under the action of a lateral load of
intensity q. Let this load be increased by increments !:J.q until the desired load is reached. The
increments of lateral displacement, plastic strain, etc. are denoted by double subscribed
notations, where the first subscript is associated with load increment and the second subscript
denotes the cycle of iteration. Thus, !:J. "'<ft+I)m and !:J.E"(ft+l)m refer, respectively, to the incre
ments of lateral displacement and plastic strain due to the (n + l)lh load increment at the end of
mlh cycle. When the final values of these variables are reached, the second subscript is deleted.

For the (n + l)lh incremental applied load, assume that the resulting incremental lateral
displacement and plastic strain are equal to those obtained at the end of the nih load increment.
This indicates that

Using these relations in eqns (8) and (9), the trial values of the equivalent body forces !:J.X(ft+l)h
!:J. Y(II+l)h !:J.X;~+l)h !:J. Y;~+l)h and lateral load !:J.q;~+1)1 are obtained. It must also be noted that the
magnitude of !:J.q(lI+llI is not known at this time. With the trial values of !:J.X, !:J. Y, !:J.X", and !:J. Y"
known, eqns (7a,b) are solved to determine the incremental in-plane displacements !:J.U(n+llI and
!:J. V(II+I)I. This is a plane stress problem with given boundary conditions and applied forces.
The numerical method of finite difference or finite element can be employed to evaluate!:J.U1n +1)I
and !:J. V(II+I)I' Thus, the membrane forces !:J.NX1n• III , !:J.Ny1n.1II' !:J.NXY1n .)1I and consequently
N"lO+Il" NYI•• )lI and NXYln.ll) may be evaluated. Having obtained the in-plane forces, the terms
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~q(n+l)\ and q(n+I)\ can be determined. Using the trial values of lateral displacement, plastic
strain, and in-plane displacements in eqn (2), stresses ~"ji(n+\l and hence Tjj(n+\l are determined.
The plastic constitutive relations given by eqns (10) and (12) or (21) are consequently utilized to
evaluate the incremental components of plastic strain. Denote these components by ~Eij(n+\l2'

Inserting values of ~q(n+\l" ~q'(n+I)" and the applied load increment ~q into eqn (7c) allows for
the determination of lateral displacement ~W(n+\l2. With the new values of~ W(n+\l2 and ~E;j(n+\l2
known, the same procedure is repeated until the difference between the successive values of
~W and ~Eij are within desired limits. Thus the lateral displacements, stresses and strains in a
plate due to bending under both large deflection and plastic strain are obtained.

NUMERICAL EXAMPLES
Consider a simply supported symmetrical laminated plate composed of four layers of fiber

reinforced laminae of equal thickness. Each lamina consists of Narmco epoxy matrix rein
forced by boron fibers along a single direction and having 10" x 10" x 3/32" dimensions. The
plate is subjected to a uniformly distributed lateral load and the edges are assumed to be
immovable in the plane of plate. The boundary conditions are thus given as

W=Mx = U= V=O

a
W =My =U = V =0 at y =±'2'

For simply supported edges, the only non-zero moment along the boundaries of an elastic
rectangular plate is Mxy• Hence only M~; will develop while M~' and M~' remain zero on the
boundaries when the plastic range is propagated to edges. Thus, the presence of plastic strain
will not violate the boundary conditions and no modification of the boundary conditions is
necessary for the equivalent plate when the plate is rectangular[33].

The uniaxial relation in transverse direction is approximated by the followins relations

and

dE"=n[U-(U1h]"-ldU when u~(uyh
Uo Uo

dE"=O when U< (Uy)T.

Where (uyh denotes tensile yield stress in transverse direction. The magnitudes of constants n
and Uo together with material properties are listed in Table 1. The initial yield surface for
longitudinal normal UII, transverse normal Un, and longitudinal shear TI2 loading for boron
epoxy composite material [36] is given in rig. 2.

While the elastic solutions for plate bending problems under arbitrary loadings are generally
known[37], the analytical solutions for plane stress problems of finite region under body forces
are not often available. However, with the use of numerical techniques such as finite element
method[38] the solution of an elastic plane stress problem is possible.

The plane of plate is divided into 10 x 10 square grids while the thickness of each layer is
divided into three equal increments. For the plane stress problem, each square grid consists of
four constant strain triangular elements. Such a quadrilateral involves fewer number of
unknowns than four triangles. In addition, it ensures that the solution is independent of the
skew of subdivision mesh. The influence coefficients of stress Nx. N." Nz, may therefore be
obtained. Using the known linear elastic solution for the plate bending, influence coefficients of
lateral displacements were also determined.
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Table I.

Boron Epoxy;

tModulus of elasticity, psi

Shear modulus, psi
Poisson's ratio
Plastic modulus, psi

Plastic shear modulus, psi
Yield stresses, psi
(from the unidirectional test data)

0'0 psi
n

EL. = 31.9 x lit
ET =3.1 x lit
On = I x lit
"!:! =0.208
E =3.5xW
E{=5.22x 1()3
07.r= 1.136 x W
(O',lL. =1.6 x I()-~

(O'~)T =8x J()3
(r~)L.T =3x 1()3
7.8 x 1()3
1.33

tThe subscripts Land Trefer to directions parallel and transverse to
fibers, respectively.

;Ref. (41).

0'22' ksi

-10

Fig. 2. Initial yield loci for Boron-Narmco epoxy composite, V, = 0.5.

Ojl' ksi

The (MHT) is used to obtain an elastic-plastic solution. In addition, the consideration of the
effects of hydrostatic pressure OD yielding and compressibility in the plastic range offered by
(AT) is also employed in the analysis of composite plates.

The results of the elastic-plastic plate for both (MHT) and (AT) at q =400 psi are shown in
Figs. 3-6. The linear and nonlinear elastic solutions are also included for the purpose of
comparison. The results of center displacement shown in Faa. 3 indicate that the elastic-plastic
case yields higher values than the elastic ones. However, the (MHT) results in sliahtly higher
displacements. The variation of the extreme fiber stresses at the center of plate are given in
Figs. 4 and 5 while the value of shear stress at the corner of the plate is shown in Fig. 6.
Although the difference in the magnitude of (TIl for elastic and elastic-plastic solutions is slight,
the deviation of (T'I component of stress is mOl'e'pronounced. This may be attributed to the fact
that. in the lamina considered. fibers are oriented in X direction, i.e. absence of any pronounced
inelasticity in the fiber direction. It must be noted that the extreme fiber shear stress at the
comer of the plate is considerably relieved by plastic strain. The proaress of plastic zone for
(MHT) is somewhat different than (A T) for the example problem considered. The center of the
plate yields initially when the plastic constitutive relations of (MHT) are used. Consequently as
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Fig. 3. Deftection at the center of the plate. boron epoxy.

80

the load is increased, plastic range is propagated from center toward edges. However, before
the plastic deformation completely reaches the edges, the comer of the plate starts yielding and
the plastic deformation in tum propagates toward the center of the plate. Employing (AT) in
the elastic-plastic analysis. plastic strain is first initiated at the comer of the plate and the
central point starts yielding at a higher load. The following argument can be used to explain the
difference in the progress of the plastic zones resulting from two approaches: Recall that in
(MHT) yielding stresses are determined from each of the directional stress-strain test data
while the result of the theoretical initial yield surface is used in (A T) to predict these yield
stresses. The origin of the coordinate axes in the stress space, shown in Fig. 2, corresponds to
the stress at a point in matrix which has reached the elastic limit under a state of pure shear.
The magnitude of the yield stress in pure shear for boron epoxy composite of Fig. 2 is found to
be 1.0.5 ksi as opposed to a value of 3ksi found from shearing stress-strain curve. This discrepancy

40

10

~ ~ ~ 40 ~ 80 ro
qa"lE,h4

Fig. 4. Variation of the extreme fiber stress u. with load at the center of the plate. boron epoxy.
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Fig. S. Variation of the extreme fiber stress tT, with load at the center of the plate, boron epoxy.
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Fig. 6, Variation of the extreme fiber shearing stress with load at the corner of the plate, boron epoxy.

in the value of shearingstresses indicates the tendency of unidirectional composites to locally yieJd
in shear at a very low stress level. Moreover, this low yielding is not clearly evident in the
unidirectional test data. The phenomenon is consistent with the recent investigations of the
inelastic behavior of composite materials by Adams[39] and Foye[40). Based on the foregoing
discussion. it is now obvious that the comer of the plate at the extreme surface which is under a
state of pure shear yields initially.

The alternate plastic constitutive relations was also used in the analysis of a symmetrical
cross-ply laminated plate of boron filament and 6061 aluminum alloy matrix. The results for this
case is not presented here. However, the interpretation of the results for boron aluminum plate
is similar to the previous example problem.

In the case of isotropic plates, for a lateral deflection of the order 0.4 h, the stretching of the
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middle surface can be neglected without a substantial error in the magnitude of maximum
stresses and deflections [37]. However, the examination of Figs. 3-5 indicates that in the
analysis of the laminated composite plates, for the lateral deflection of the order of 0.4 h, the
error in the maximum deflection and stress as given by the small deflection theory becomes
considerable and the strain of the middle surface must be considered.

The procedure used in this paper may be employed to solve variety of laminated plate
problems under arbitrary loading, boundary conditions and stacking geometry. Furthermore,
the present method can easily be extended to include the effect of temperature change in
addition to external loads. The initial yield surfaces of composite laminates under arbitrary
combinations of macrostresses and temperature changes can be constructed by means of a finite
element analysis similar to that used by Lin et al.[29]. Moreover, the procedure may be
extended to obtain approximate solutions for creep problems.

CONCLUSION

The solutions of the fiber-reinforced composite plate problems considered in the in
vestigation indicate that the lateral deflection for the elastic-plastic case was slightly higher
than that of a purely elastic problem for both (MHT) and (AT). The comparison of the
maximum fiber stresses for elastic and elastic-plastic plates obtained from (MHT) and (AT)
revealed a slight difference in the magnitude of stresses in the longitudinal direction in contrast
to a more pronounced deviation of transverse stresses. It must be noted that the extreme fiber
shear stress at the corner of the plate was considerably relieved by plastic strain. It was also
shown that the results of (MHT) and (AT) differed markedly at the corner of the plate. Thus,
the progress of the plastic zone for (AT) is considerably different than (MHT) for example
problems considered. In light of the above findings, (MHT) does not seem to predict the real
behavior of the composite materials. The comparison of the results of linear and nonlinear
elastic solutions indicates that the extent of wlh within which the small deflection theory may
be used for· composite laminates depends upon lamina anisotropy as well as lamination
geometry.
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